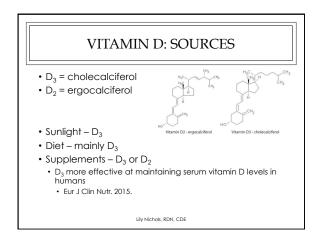
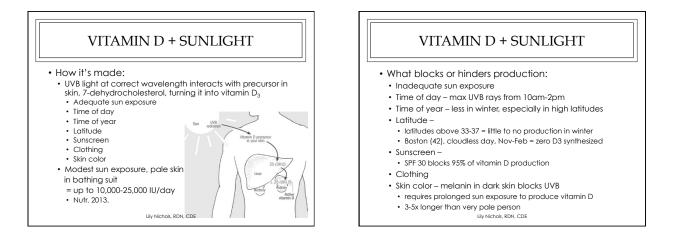


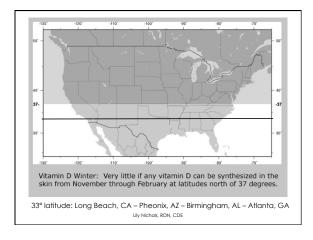
OBJECTIVES

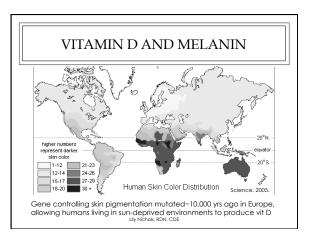
- After the presentation, participants will be able to: · Describe risk factors for vitamin D deficiency and major sources of the vitamin
 - · Understand role of vitamin D on maternal and fetal outcomes
 - Explain rationale for normalizing vitamin D levels during pregnancy
 - · Give evidence-based recommendations for vitamin D supplementation in pregnancy

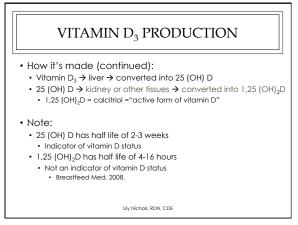
Lilv Nichols, RDN, CDE

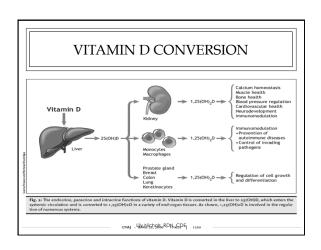

OVERVIEW


- Vitamin D sources, how it's made, metabolism
- Impact on maternal health
- Impact on fetal outcomes
- Supplementation trials




VITAMIN D BASICS


- Fat soluble vitamin, but actually a hormone
- Major function: maintain blood levels of calcium and phosphorus
- Other functions (select few):
- bone mineralizationblood pressure & blood sugar regulation
- mental health (synthesis of serotonin)
- cardiovascular health neurodevelopment
- immune health
- regulation of cell growth and differentiation
- Regulates 3% of human genome



VITAMIN D CONVERSION, CONT'D

- The placenta can also convert vitamin D to its active form, 1,25 (OH)2D. In early pregnancy, synthesis of 1,25 (OH), D increases dramatically.
- By 12 weeks, 1, 25 (OH)₂D serum levels are >2x nonpreanant levels
- They continue to rise in pregnancy, reaching > 700 pmol/L Non-pregnant reference range: 48–120 pmol/L
- These levels "would be toxic due to hypercalcemia to the non-pregnant individual, but are essential during pregnancy'
 - Bone Research. 2017

Lily Nichols, RDN, CDE

ACTIVATED VITAMIN D

- Over 30 tissues express the vitamin D receptor, and are able to respond to 1,25 (OH) $_{\rm 2}{\rm D}$
- Adequate 25 (OH)D directly affects 1,25 (OH)₂D levels in pregnancy
- Role of activated vitamin D in pregnancy:
 - aids implantation
- supports fetal growth through delivery of calcium regulates placental function & placental hormone levels limits production of proinflammatory cytokines

- involved in maturation of fetal lungs
 maintains endothelium integrity/membrane stability
 Nutrients, 2015; Bone Research, 2017; Metabolism, 2017.

Lilv Nichols, RDN, CDE

VITAMIN D HOMEOSTASIS

- Pregnancy results in 3 major adaptations in vitamin D homeostasis:
- Increase in maternal 1,25 (OH)₂D
- Maintain maternal 25(OH)D availability for optimal neonatal 25(OH)D status
- Increase of maternal VDBP concentrations
- These changes are seen in systemic + placental circulation
 - It's believed that the placenta is the major site of vitamin D metabolism in pregnancy Metabolism, 2017

Lilv Nichols, RDN, CDE

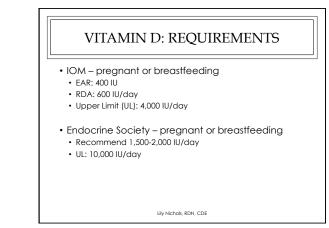
VITAMIN D + DIET

- Dietary sources:
 - Fatty fish salmon, sardines, fish eggs, fish liver
 - Organ meats, especially liver
- Egg yolks
- 3x higher levels if chickens are outdoors in sunlight
- Dairy products whole milk from pastured cows OR fortified
 Commercial milk is fortified to 100 IU per 8oz Yogurt and cheese are <u>not</u> always fortified
- Animal fats of pastured animals
 Butter, lard, tallow if animal received adequate sunlight
- Fortified foods
- Typically 100 IU or less per serving Mushrooms
- Small amounts of vitamin D₂ if grown under UVB light
 - Br. J. Nutr. 2012; Plos One. 2013; Adv. Nutr. 2013.

VITAMIN D + DIET

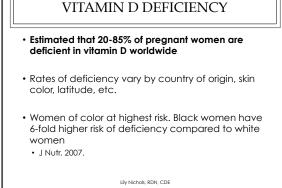
- · Diet is generally considered a poor source of vitamin D
- UVB rays from sun are the primary source Sun exposure accounts for ~90% of vitamin D in the body in individuals who do not take supplements Am J Clin Nutr. 2004.
- If sun exposure is inadequate, supplementation is required to meet the body's needs

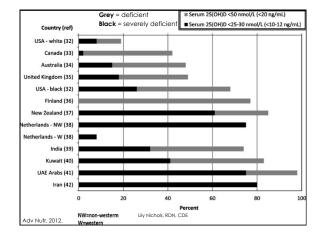
Lilv Nichols, RDN, CDE

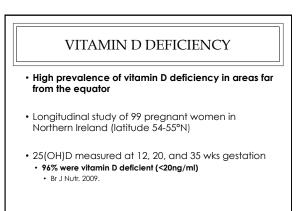

CO-FACTORS

- Nutrients that work synergistically with vitamin D:
 - Magnesium
 - Vitamin A
 - Vitamin K2
 - Calcium
 - Zinc
 - Boron

VITAMIN D: NORMAL LEVELS


- Deficiency < 20 ng/ml (50 nmol/L)*
- Insufficiency < 30 ng/ml
- Normal >30 or 32 ng/ml
- Optimal levels debated ~ 30-80 ng/ml
- Lifeguards = 70 ng/ml
 Native tribal, nomadic Africans (including preg) = 46 ng/ml
 Br J Nutr. 2012.
- Rickets/osteomalacia < 10 ng/ml
- *25 (OH) D levels
- *Unit conversion 1 ng/ml = 2.5 nmol/L


Lilv Nichols, RDN, CDE



VITAMIN D: SCREENING American College of Obstetricians and Gynecologists (ACOG): Vitamin D screening and supplementation during pregnancy is not required <u>unless</u> women: Live in cold climates Reside in Northern latitudes Wear sunscreen and protective clothing Vear sunscreen and protective clothing Are ethnic minorities Are vegetarian What % of your patients meet at least one of the criteria above?

Lily Nichols, RDN, CDE

VITAMIN D DEFICIENCY

· Deficiency is common even at latitudes where year-round UVB exposure is expected to be adequate

- Study of 494 pregnant women in South Carolina (latitude 32°N)
- 25 (OH) D measured at 14 weeks gestation
 - Deficiency ≤ 20ng/ml • 154 African-American - 97% deficient
 - 194 Hispanic 81% deficient
 - 146 Caucasian 67% deficient
 - Amer J Perinatol. 2011.

Lilv Nichols, RDN, CDE

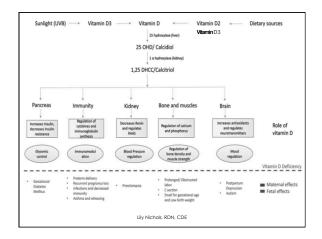
VITAMIN D DEFICIENCY

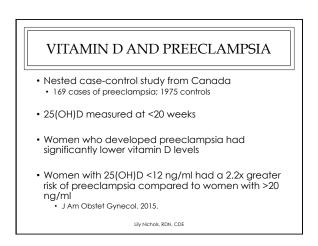
- Dark-skinned women in Northern latitudes at highest risk. Current RDA may be insufficient.
- Study of 40 healthy mother-infant pairs. Mostly black. Living in Michigan (latitude >42°N)
- Moms ingested 600 IU Vitamin D₃ daily (PNV + 2 glasses milk)
- At birth:
 - 76% of mothers were deficient (<20 ng/ml)
 - 81% newborns were deficient (<20 ng/ml)
 Child Pediatr. 2007.

Lily Nichols, RDN, CDE

VITAMIN D DEFICIENCY Cross-sectional study of pregnant women in Norway

- 25 (OH) D measured:
- 1st trimester
- 2 days postpartum
- Mean vitamin D intake (572 IU) met Nordic recommendations, yet:
- 71% of women were deficient (<20 ng/ml)
 - J Clin Endocrinol Metab. 2010.


Lilv Nichols, RDN, CDE


CONSEQUENCES OF VITAMIN D DEFICIENCY

Lilv Nichols, RDN, CDE

MATERNAL EFFECTS OF DEFICIENCY • Meta-analysis of 24 studies found mothers with 25 (OH) D < 20ng/ml had higher risk of: Gestational diabetes [OR 1.38] Preeclampsia [OR 2.09] Preterm birth [OR 1.58] Small for gestational age [OR 1.52] J Matern Fetal Neonatal Med. 2013. • Meta-analysis of 31 studies found similar results: Gestational diabetes [OR 1.87] Preeclampsia [1.79] • Small for gestational age [1.85] • BMJ. 2013. Lilv Nichols, RDN, CDE

MATERNAL EFFECTS OF DEFICIENCY · Low maternal vitamin D is also associated with: Bacterial vaginosis J Am Obstet Gynecol. 2017. Maternal periodontal disease Arch Womens Ment Health. 2015. Postpartum depression J Am Psychiatr Nurses Assoc. 2010. C-Section Plos one. 2015. Prolonged or obstructed labor J Am Perinatol. 2015 Recurrent pregnancy loss Hum Reprod. 2014.

PREECLAMPSIA: VITAMIN D MECHANISM OF ACTION

- Compared to normal pregnancy, in preeclampsia:
- Activation of vitamin D to 1,25(OH)₂D is decreased
- Catabolism of 1,25(OH)₂D increased
- Placental accumulation of vitamin D is impaired
- Placental uptake of vitamin D binding protein is dysregulated

• Placenta, 2017.

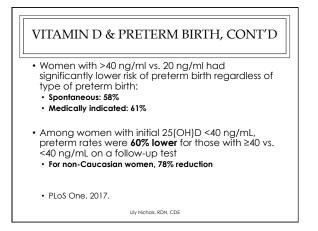
Lily Nichols, RDN, CDE

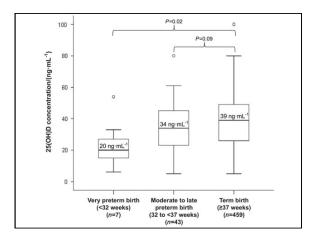
VITAMIN D AND POSTPARTUM DEPRESSION

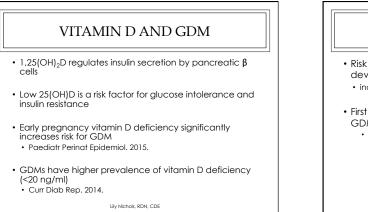
- Turkish study on postpartum depression (PPD)
 Follow-up to Robinson et al study, in which women in the lowest quartile (<18.8 ng/ml) for Vitamin D at 18 weeks gestation were more likely to have postnatal mood disturbances
- Lower maternal vitamin D levels in 2nd trimester of pregnancy were associated with higher levels of PPD symptoms at 1 week, 6 weeks, and 6 months postpartum
 - Arch Womens Ment Health. 2015.

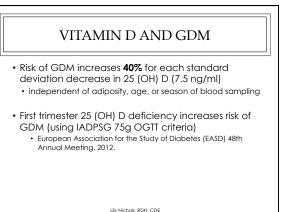
Lily Nichols, RDN, CDE

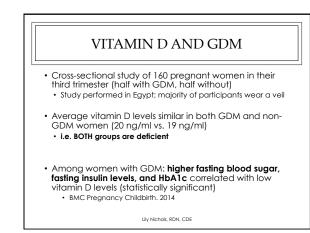
PRECONCEPTION VITAMIN D & PREGNANCY LOSS

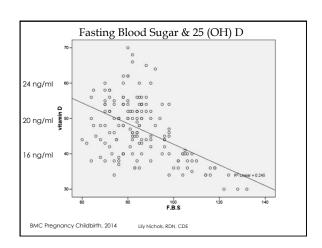

- Secondary analysis of data from EAGeR trial (large RCT)
 1191 women aged 18–40 years with 1 or 2 previous pregnancy losses in the USA
- Vitamin D measured preconception & 8 weeks gestation
- Sufficient preconception 25(OH)D (≥30 ng/ml) was associated with increased likelihood of pregnancy and live birth.
- Sufficient 25(OH)D at preconception, but not in early pregnancy, were associated with reduced risk of pregnancy loss.
 Lancet Diabetes Endocrinol. 2018.

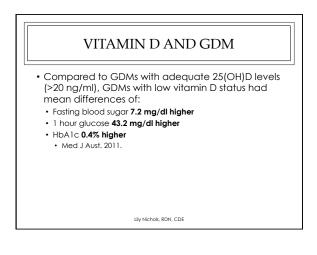

Lilv Nichols, RDN, CDE


VITAMIN D & PRETERM BIRTH


- Observational study of new vitamin D & pregnancy policies at Medical University of South Carolina (MUSC)
 1,064 pregnant women, ethnically diverse
- Nurse + prenatal pamphlet explained benefits of vitamin D supplements at first prenatal visit
- Free vitamin D supplements (5,000 IU/day) were provided
- Vitamin D screening at first prenatal visit + follow up testing each trimester
 - Treatment goal was ≥40 ng/ml

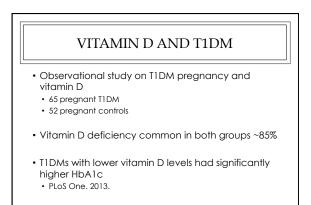

PLoS One. 2017.
Lily Nichols, RDN, CDE

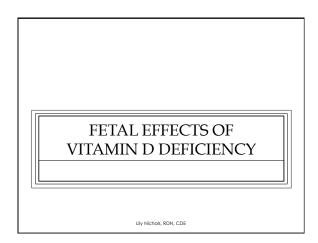




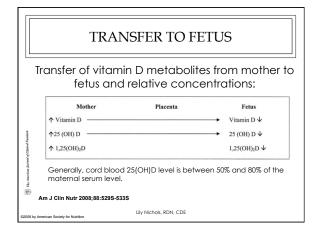
VITAMIN D AND GDM

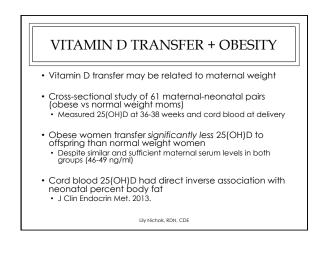
- Observational study of 147 women with GDM in Australia
- 41% deficient in vitamin D
 Deficiency more common in Indian & Middle Eastern women
- 25 (OH) D levels were inversely associated with:
 fasting and 2 hr BG (during 75g OGTT)
 - HbAlc
- 25 (OH) D found to be independent predictor of HbA1c
 Association remained significant even after excluding abnormal HbA1c values (defined as > 6%)
 Med J Aust. 2011.


Lily Nichols, RDN, CDE


VITAMIN D AND GDM

- Cohort study of 1,873 women >24 wks
- Severe vitamin D deficiency (<10 ng/ml) was significantly more common in women with GDM (16.5% vs 11%)
- Deficient women had less exposure to sunlight, lower use of vitamin D supplements, and less physical activity
 - Int J Women's Health. 2013.


Lily Nichols, RDN, CDE



Lily Nichols, RDN, CDE

VITAMIN D IMPACT ON FETUS Stores of vitamin D in the infant are dependent on maternal vitamin D status 25 (OH) D passes from placenta to fetus Maternal 1,25(OH)₂D does <u>not</u> cross the placenta, however, the placenta can synthesize 1,25(OH)₂D directly from 25 (OH)D Ann Nutr Metab. 2018.

VITAMIN D TRANSFER + OBESITY (ANOTHER STUDY)

- Analysis of subset of data from Hyperglycemia and Adverse Pregnancy Outcomes (HAPO)
- Caucasian women, residing at latitudes 41–43°, 39–41 weeks
 Healthy pregnant women had a 75-g fasting oral glucose tolerance test (OGTI) at ~28 weeks
- Every 1-point increase in maternal BMI (kg/m²) was associated with:
 - Vitamin D levels 0.26 ng/ml lower in cord blood (p<0.004)
 Vitamin D levels 0.40 ng/ml lower in maternal blood (p<0.001)
- Birth weight and neonatal adiposity NOT associated with vitamin D levels
 - PloS one. 2016.

Lily Nichols, RDN, CDE

MATERNAL VITAMIN D AND FETAL BONE DEVELOPMENT

- Vitamin D is well known to influence calcium uptake
 and bone metabolism
- In infants with rickets, 91% of moms had vitamin D levels <10 ng/ml (severe deficiency)
 Clin Nutr. 2015.

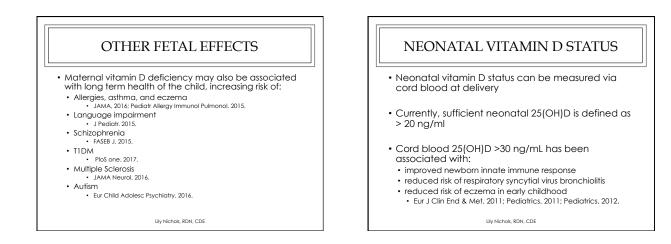
FETAL BONE DEVELOPMENT

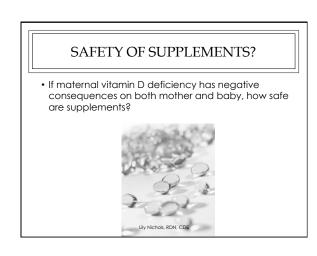
- Maternal vitamin D deficiency is associated with craniotabes in infants, a softening of skull bones
 Clin Nutr. 2015.
- Craniotabes may be one of earliest sign of vitamin D deficiency and nutritional rickets
 - J Clin Endocrinol Metab. 2008.

FETAL BONE DEVELOPMENT

- Although nutritional rickets is rare, incidence has increased significantly from the year 2000
 Mayo Clin Proc. 2013.
- In a review study of US rickets cases from 1986-2003,
 83% of children with rickets were African American or black
 - 96% were breast-fed. Among children who were breast-fed, only 5% received vitamin D supplements
 - Only incidence of rickets in white children were those living in northern latitudes
 - Am J Clin Nutr. 2004

FETAL BONE DEVELOPMENT


- Prospective longitudinal study of pregnant adolescents <18yrs old followed from 26 wks to term
- Measured serum vit D and fetal bone development (via sonograms)
- Moms with adequate vitamin D (>20 ng/ml) had infants with significantly longer femur and humerus bones
- Calcium intake was <u>only</u> associated with appropriate BMD in femur when maternal vitamin D was >20 ng/ml
 Am J Clin Nutr. 2012.


Lily Nichols, RDN, CDE

BONE HEALTH LATER IN LIFE

- Children of mothers with low vitamin D status during late pregnancy have reduced whole body bone mineral content, bone area, and areal bone mineral density at age 9
 - Lancet. 2006.
- Maternal vitamin D deficiency at 18 weeks' gestation is associated with lower peak bone mass among children at 20 years of age
 J Bone Miner Res. 2014.
- Suggests maternal vitamin D influences lifetime bone health in offspring

Lily Nichols, RDN, CDE

SUPPLEMENTATION

- Cochrane review in 2012 looked at 6 trials with a total of 1023 women
- Objective: examine whether supplements with vitamin D given to women during pregnancy can safely improve maternal and neonatal outcomes
- Evaluated effect of:
 - Vitamin D alone versus no treatment/placebo (no vitamins or minerals)
- Vitamin D + calcium versus no treatment/placebo (no vitamin or minerals)
- Vitamin D + calcium versus calcium (but no vitamin D)
 Vitamin D + calcium + other vitamins and minerals versus calcium + other vitamins and minerals (but no vitamin D) Lit Vitamis RDN. CDE

Lily Nichols, RD

COCHRANE CONCLUSIONS

- Vitamin D supplementation during pregnancy increases maternal 25(OH)D
- Inadequate number of high quality trials and outcomes reported to draw conclusions on vitamin
 D supplementation for maternal or fetal outcomes
- Suggested more RCTs to evaluate the role of vitamin D supplementation in pregnancy

Lily Nichols, RDN, CDE

COCHRANE REVIEW: CRITICS

- Omitted an RCT using 400 IU of vitamin D as a control group
- Grouped all levels of vitamin D supplementation
 Main outcome measured was effect of vitamin D supplement vs. no vitamin D supplement, not what level of supplementation was most effective
- Well established that low levels of supplementation may not correct vitamin D deficiency
- No separate analysis to assess role of ethnicity or latitude

Lily Nichols, RDN, CDE

COCHRANE UPDATES

- 2016 Update now includes 15 trials (2833 women)
 9 compare vitamin D alone vs. no treatment
 6 compare vitamin D + calcium vs. no treatment
- Conclusions: vitamin D supplementation significantly raises serum 25(OH)D levels, particularly if supplementation is <u>daily</u> versus weekly, monthly or once
- Vitamin D supplementation, with or without calcium, may reduce the risk of preeclampsia
- Observational studies have found an association between vitamin D and lower rates of GDM and C-section

Lily Nichols, RDN, CDE

CRITICS OF COCHRANE

- Trials comparing differing doses of vitamin D supplements were not included
- This includes 2 studies by Hollis et al., which found significant beneficial effects of high doses of vitamin D supplementation (4000 IU/d) compared to lower dose (400 or 2000 IU/d) during pregnancy on pre-eclampsia and caesarean section.
- \bullet There are currently ~15 ongoing trials that could contribute additional data
 - J Steroid Biochem Mol Biol. 2016.

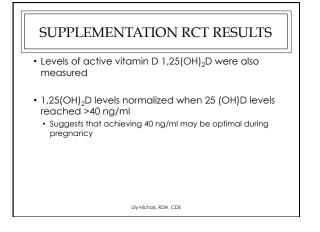
Lily Nichols, RDN, CDE

RCTs on VITAMIN D SUPPLEMENTATION

1ST SUPPLEMENTATION RCT

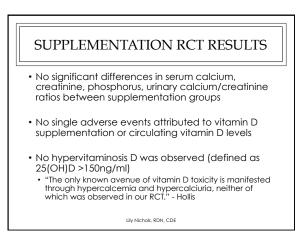
- Double blind, RCT on safety and effectiveness of vitamin D supplementation in pregnancy
 J Bone Miner Res. 2011.
- Goal = normal 25(OH)D in mother and infant
- 350 healthy pregnant women given daily vitamin $\rm D_3$ supplements of 400 IU (control), 2,000 IU, or 4,000 IU starting at 12-16 wks gestation
 - Caucasian 32%
 - African American 28%
 - Hispanic 40%
 Liv Nichols, RDN, CDE

151	SUPPL	EMENTA	TION R	CT
Vitamin D	measured	each trimest	er	
Chaman		Luitancia D Ia		
Changes	in materna	l vitamin D le	veis:	
	Mean Mate	ernal 25(OH)D Le	evels (ng/ml)	
Treatment	Baseline	2 nd Trimester	3 rd Trimester	% sufficient at delivery
400 IU	24.5	30.4	32.5	50.0%
400 10		33.7	41.0	70.8%
2,000 IU	23.0	33./	41.0	10.0/0
	23.0	33./	45.8	82.0%


SUPPLEMENTATION RCT RESULTS

Outcome on infant vitamin D levels:

Treatment	Mean cord blood vitamin D levels at birth (ng/ml)	% of infants reaching sufficient vitamin D levels
400 IU	18.2	39.7%
2,000 IU	22.8	58.2%
4,000 IU	26.5	78.6%
p-value	<0.0001	<0.0001


- Infant vitamin D levels >20 ng/ml considered sufficient
- Maternal intake of 400 IU/day (EAR) resulted in ~60% of infants deficient at birth LIV Nichols, RDN, CDE

501						NC1	RES		5
• Vita	min D	level	s by ro	ace a	nd tri	meste	r		
Treatment	400 IU	1		2,000	IU		4,000	IU	
	Mean	Materr	nal 25(C	H)D Le	vels (ng	g/ml)			
Race	В	2 nd	3 rd	В	2 nd	3 rd	В	2 nd	3 rd
Black	14.9	19.5	19.8	16.4	28.9	36.5	16.3	32.4	39.1
Hispanic	23.6	31.0	31.8	23.7	34.1	40.1	25.4	40.6	48.4
White	32.5	38.1	42.8	28.8	38.0	45.0	28.5	43.9	48.2
P value	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.02	<0.0001	<0.0001	<0.008

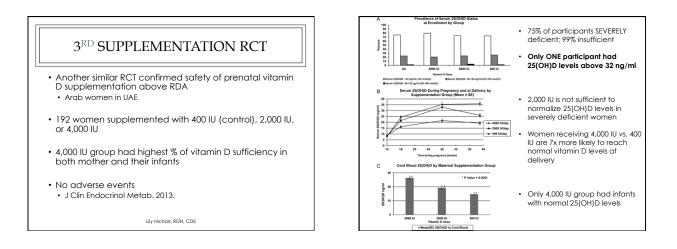
SUPPLEMENTATION RCT RESULTS

- Vitamin D supplementation resulted in significantly lower rates of:
- Primary C-section (p = 0.046)
- Hypertensive disorders of pregnancy (p = 0.05)
- Comorbidities of pregnancy (p = 0.03)
- Rates of GDM also decreased with vitamin D supplements (results did not reach statistical significance)

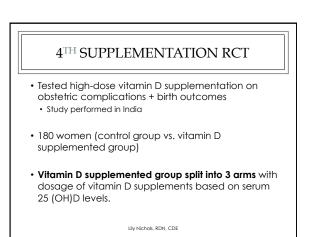
SUPPLEMENTATION RCT LIMITATIONS

- Study was completed at 32 degrees latitude
- Vitamin D obtained from sun exposure may confound results
 Women in northern latitudes may require more vitamin D
- Subjects were not severely deficient at baseline
 Mean 25 (OH) D for all subjects = 23.8 ng/ml
 - Higher doses of vitamin D may be needed in severely deficient women
- Focus was normalizing vitamin D levels, not comorbidities. Need further studies.

Lily Nichols, RDN, CDE


2ND SUPPLEMENTATION RCT

Similar study design to previous RCT by Hollis
 257 pregnant women 12–16 weeks; South Carolina; ethnically


diverse • 2000 IU vs. 4000 IU/day

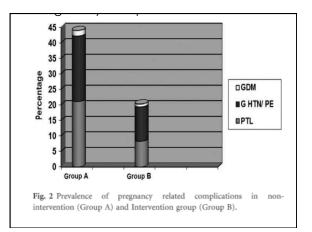
	Maternal 25(OH)D		Infant 25(OH)D
Treatment	Baseline	3 rd Trimester	Cord Blood
2,000 IU	22.7	36.2	22.1
4,000 IU	22.7	37.9	27.0

 After controlling for race and study site, preterm birth and labor were inversely associated with pre-delivery 25(OH)D.
 AJOG. 2013.

		4000 IU (r	n = 43)	2000 IU	(n = 41)	400 IU	(n = 42)	P Value
Mothers a	achieving 25(OH)D ≥ 32 ng/mL (≥80 nmol/L), n, %	28 (65.1)		10 (24.4)		4 (9.5)		.0001
Aothers a	achieving 25(OH)D \ge 20 ng/mL (\ge 50 nmol/L), n, %	39 (90.7)		31 (75.6)		20 (47.	.6)	.0001
nfants ac	thieving 25(OH)D ≥ 20 ng/mL (≥50 nmol/L), n, %	34 (79.1)		18 (43.9)		9 (21.4)	.0001
	Categories of Maternal and Infant Vitamin D	Status in 4000		1dy and 1 2000		400 IL	J	
	Categories of Maternal and Infant Vitamin D	4000	IU	2000	U	400 IU		
	Categories of Maternal and Infant Vitamin D						J US	
	Categories of Maternal and Infant Vitamin D	4000	IU	2000	U	400 IU		
		4000 UAE	IU US	2000 UAE	UUS	400 IU UAE	US	
	Mean baseline 25(OH)D, ng/mL	4000 UAE 7.8 35.9	US 23.3	2000 UAE 8.2	US 23.3	400 IU UAE 8.6	US 24.6	

4TH SUPPLEMENTATION RCT

- If vitamin D was sufficient, ONE dose of 60,000 IU D3
- at 20 weeks
- If vitamin D was **insufficient**, TWO doses of 120,000 IU D3
 at 20 weeks and 24 weeks
- If vitamin D was deficient, FOUR doses of 120,000 IU D3
 at 20, 24, 28 and 32 weeks
- "Sufficient" (>20 ng/ml) received total of 60,000 IU
 Average of 3,000 IU/week
- "Insufficient" (10-20 ng/ml) received total of 240,000 IU
- Average of 12,000 IU/week
 "Deficient" (<10 ng/ml) received total of 480,000 IU
 Average of 24,000 IU/week


Lilv Nichols, RDN, CDE

4TH SUPPLEMENTATION RCT Maternal 25(OH)D at Vitamin D Levels 🗲 Infant 25(OH)D Maternal Baseline % who achieved Delivery % who achieved 25(OH)D >20 ng/ml >20 ng/ml Treatment Unsupplemented 9.6 ng/ml 14% 14% Supplemented 60,000 IU >20 ng/ml 89% 46% (collective 240,000 IU 480,000 IU 10-20 ng/ml <10 ng/ml 85% 53% total) Lilv Nichols, RDN, CDE

4TH SUPPLEMENTATION RCT

- Sufficient vitamin D levels (>20 ng/ml) were seen in 93.3% patients who had >4 h of sun exposure every day as compared to 1.9% in those with <1 h of daily sun exposure (P = 000).
- "A strong association was found with religion, more Muslims were found to have vitamin D deficiency as compared to Hindus (75% vs 45%)."
- Women in the supplemented group had significantly lower rates of gestational diabetes, preeclampsia, and preterm birth
 - Clin Endocrinol. 2015.

Lily Nichols, RDN, CDE

4TH SUPPLEMENTATION RCT

- Supplementing with a large bolus of vitamin D is safe in pregnancy (if preferred over daily dosing)
- "Pregnant women with risk factors for vitamin D deficiency (inadequate sun exposure, high BMI and poor nutritional intake) can be safely given a total of 480 000 IU divided in four doses of 120 000 IU each at 20, 24, 28 and 32 weeks of gestation."
- My thoughts:
 Would be best to calculate out daily dosage to ensure adequate intake
- Good study design to supplement based on 25 (OH)D status

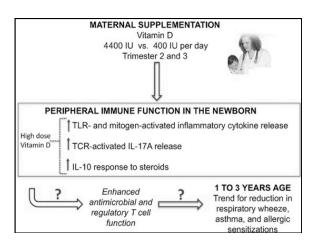
Lily Nichols, RDN, CDE

5TH SUPPLEMENTATION RCT

- 193 Pakistani women
- Vitamin D (4,000 IU, started at 20 weeks) vs. routine care (no vitamin D, routine calcium + iron supplements)
- Measured maternal 25 (OH)D at baseline and delivery + Neonatal 25(OH)D via cord blood OR 48 hours after birth

Vitamin D	Mother (ng/ml)		Infant (ng/ml)	
	Baseline	Delivery	Cord or 48hr	
No vitamin D	6.3	6.9	6.3	
4.000 IU	8.8	18.3	19.2	

5TH SUPPLEMENTATION RCT


- Both 1 and 5 minute Apgar scores were significantly higher among infants in the vitamin D supplemented group
- In supplemented group, doses of 4,000 IU/day were inadequate to correct severe maternal vitamin D deficiency
- Suggests higher doses may be needed for severely deficient women

Lily Nichols, RDN, CDE

6TH SUPPLEMENTATION RCT • Goal: assess impact of prenatal vitamin D supplementation on infant immune system • subset of VDAART study on asthma + vitamin D • 51 women; supplementation began in 2nd trimester • Control: placebo pill + 400 IU from PNV • Treatment: 4,000 IU + 400 IU from PNV (4,400 IU total) • Measured vitamin D levels (mother and cord blood) & markers of child immune system

	Maternal Baseline	Maternal 3 rd trimester	Infant Cord blood
400 IU	23.5 ng/ml	24.6 ng/ml	16.2 ng/ml
4400 IU	19.2 ng/ml	35.4 ng/ml	25.4 ng/ml
Nitamin D Nitamin D Niluences ti an contrib	analysis revea une system" exposure durir he immune sys ute to protect fectious, outco	ng fetal devel stem of the ne ion from asth	opment eonate, whic ma-related,

Lily Nichols, RDN, CDE

HOW TO ENSURE MOTHERS GET ENOUGH VITAMIN D?

- \cdot Only way to assess vitamin D adequacy is to check serum 25 (OH) D
 - Identify and test at-risk patients
- Encourage regular sun exposure or consider supplementation
- Due to the variables that affect skin synthesis of vitamin D and skin cancer concerns, it is difficult to recommend a specific amount of sunlight exposure for all populations

Lily Nichols, RDN, CDE

ACOG GUIDELINES FOR SUPPLEMENTATION

- At risk patients to screen:
- Live in cold climates
- Reside in Northern latitudes
- Wear sunscreen and protective clothing
- Are ethnic minoritiesAre vegetarian
- Are vegetarian
- "When vitamin D deficiency is identified during pregnancy, most experts agree that 1,000–2,000 international units per day of vitamin D is safe."
 - ACOG Committee Opinion. 2011 (Reaffirmed 2017).

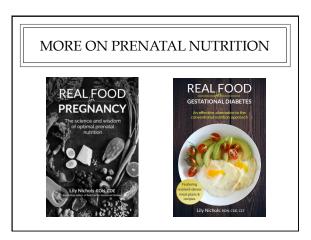
VITAMIN D NEEDS

- Some research suggests estimated requirements for vitamin D were set far too low
 - Read: "A Statistical Error in the Estimation of the Recommended Dietary Allowance for Vitamin D" and "The Big Vitamin D Mistake"
- They argue the RDA for vitamin D should have been set at 7,000-8,000 IU per day to maintain adequate blood levels of 25(OH)D for majority of adults
- As always, further research is needed • J Prev Med & Pub Health. 2017; Nutrients. 2014.

Lily Nichols, RDN, CDE

RCT FINDINGS • Suggest that 4,000 IU/day is safe and effective at raising maternal and neonatal vitamin D levels and may prevent certain complications • Some populations may require doses greater than 4,000 IU/day to achieve sufficient vitamin D levels • Ideal to adjust supplement dosage on 25(OH)D status

CLINICAL TAKEAWAYS


- Maintaining serum levels of 40 ng/ml appears
 optimal
- Provides adequate substrate for optimizing 1,25 (OH)D levels
 Close to hunter-gatherer 25(OH)D levels (physiological norm)?)
- If possible, test vitamin D status prior to or early in pregnancy, as it plays a role in implantation & needs increase in pregnancy
- Maintain vitamin D intake throughout pregnancy & postpartum

Lily Nichols, RDN, CDE

SUMMARY

- High prevalence of vitamin D deficiency in pregnant women
- Maternal vitamin D deficiency may:
 - increase the risk of pregnancy complications
 lead to deficiency in her baby, which carry lifetime health risks
- Supplementation above the RDA is safe and often necessary to normalize maternal & fetal vitamin D levels

Reference List: Vitamin D & Pregnancy Webinar

Lily Nichols, RDN, CDE | July 2018

- 1. Patrick, Rhonda P., and Bruce N. Ames. "Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior." *The FASEB Journal* 29.6 (2015): 2207-2222.
- 2. Oliveri, B., et al. "Vitamin D3 seems more appropriate than D2 to sustain adequate levels of 25OHD: a pharmacokinetic approach." *European journal of clinical nutrition* 69.6 (2015): 697.
- 3. Alshahrani, Fahad, and Naji Aljohani. "Vitamin D: deficiency, sufficiency and toxicity." *Nutrients* 5.9 (2013): 3605-3616.
- 4. Lamason, RL, et al. SLC24A5 affects skin pigmentation in zebrafish and humans. Science. 2005. 310 (5755)L1782-1786.
- 5. Wagner, Carol L., Sarah N. Taylor, and Bruce W. Hollis. "Does vitamin D make the world go 'round'?." *Breastfeeding Medicine* 3.4 (2008): 239-250.
- 6. Olmos-Ortiz, Andrea, et al. "Regulation of calcitriol biosynthesis and activity: focus on gestational vitamin D deficiency and adverse pregnancy outcomes." *Nutrients* 7.1 (2015): 443-480.
- 7. Hollis, Bruce W., and Carol L. Wagner. "New insights into the vitamin D requirements during pregnancy." *Bone research* 5 (2017): 17030.
- Karras, Spyridon N., Carol L. Wagner, and V. Daniel Castracane. "Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes." *Metabolism* (2017).
- Hymøller, Lone, and Søren K. Jensen. "25-Hydroxycholecalciferol status in plasma is linearly correlated to daily summer pasture time in cattle at 56° N." *British Journal of Nutrition* 108.4 (2012): 666-671.
- Schutkowski, Alexandra, et al. "UVB exposure of farm animals: study on a food-based strategy to bridge the gap between current vitamin D intakes and dietary targets." *PloS one* 8.7 (2013): e69418.
- 11. Schmid, Alexandra, and Barbara Walther. "Natural vitamin D content in animal products." *Advances in nutrition* 4.4 (2013): 453-462.
- 12. Holick, Michael F. "Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease." *The American journal of clinical nutrition* 80.6 (2004): 1678S-1688S.
- Holick, Michael F., et al. "Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline." *The Journal of Clinical Endocrinology & Metabolism* 96.7 (2011): 1911-1930.
- 14. Vitamin D: screening and supplementation during pregnancy. Committee Opinion No. 495. American College of Obstetricians and Gynecologists. Obstet Gynecol 2011;118:197–8.
- 15. Mulligan, Megan L., et al. "Implications of vitamin D deficiency in pregnancy and lactation." *American Journal of Obstetrics & Gynecology* 202.5 (2010): 429-e1.
- Bodnar, Lisa M., et al. "High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates." *The Journal of nutrition* 137.2 (2007): 447-452.
- Dawodu, Adekunle, and Reginald C. Tsang. "Maternal Vitamin D Status: Effect on Milk Vitamin D Content and Vitamin D Status of Breastfeeding Infants-." *Advances in Nutrition* 3.3 (2012): 353-361.
- 18. Holmes, Valerie A., et al. "Vitamin D deficiency and insufficiency in pregnant women: a longitudinal study." *British Journal of Nutrition* 102.6 (2009): 876-881.

- 19. Johnson, Donna D., et al. "Vitamin D deficiency and insufficiency is common during pregnancy." *American journal of perinatology* 28.01 (2011): 007-012.
- 20. Lee, Joyce M., et al. "Vitamin D deficiency in a healthy group of mothers and newborn infants." *Clinical pediatrics* 46.1 (2007): 42-44.
- 21. Viljakainen, H. T., et al. "Maternal vitamin D status determines bone variables in the newborn." *The Journal of Clinical Endocrinology & Metabolism* 95.4 (2010): 1749-1757.
- 22. Agarwal, Shreya, Oormila Kovilam, and Devendra K. Agrawal. "Vitamin D and its impact on maternal-fetal outcomes in pregnancy: A critical review." *Critical reviews in food science and nutrition* 58.5 (2018): 755-769.
- Wei, Shu-Qin, et al. "Maternal vitamin D status and adverse pregnancy outcomes: a systematic review and meta-analysis." *The Journal of Maternal-Fetal & Neonatal Medicine* 26.9 (2013): 889-899.
- 24. Aghajafari, Fariba, et al. "Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies." *Bmj* 346 (2013): f1169.
- 25. Powell, A., et al. "Impact of vitamin D supplementation on bacterial vaginosis in pregnancy." *American Journal of Obstetrics and Gynecology* 217.6 (2017): 723-724.
- 26. Uwitonze, Anne Marie, et al. "Periodontal diseases and adverse pregnancy outcomes: Is there a role for vitamin D?." *The Journal of steroid biochemistry and molecular biology* (2018).
- 27. Gur, Esra Bahar, et al. "The effect of vitamin D level in pregnancy on postpartum depression." *Archives of women's mental health* 18.2 (2015): 263.
- Loy, See Ling, et al. "Association of maternal vitamin D status with glucose tolerance and caesarean section in a multi-ethnic Asian cohort: the growing up in Singapore towards healthy outcomes study." *PloS one* 10.11 (2015): e0142239.
- 29. Gernand, Alison D., et al. "Maternal vitamin D status, prolonged labor, cesarean delivery and instrumental delivery in an era with a low cesarean rate." *Journal of Perinatology* 35.1 (2015): 23.
- 30. Ota, Kuniaki, et al. "Vitamin D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular immunity and autoimmunity." *Human reproduction* 29.2 (2013): 208-219.
- 31. Achkar, Madonna, et al. "Vitamin D status in early pregnancy and risk of preeclampsia." *American Journal of Obstetrics & Gynecology* 212.4 (2015): 511-e1.
- 32. Tamblyn, J. A., et al. "Dysregulation of maternal and placental vitamin D metabolism in preeclampsia." *Placenta* 50 (2017): 70-77.
- Mumford, Sunni L., et al. "Association of preconception serum 25-hydroxyvitamin D concentrations with livebirth and pregnancy loss: a prospective cohort study." *The Lancet Diabetes & Endocrinology* (2018).
- 34. McDonnell, Sharon L., et al. "Maternal 25 (OH) D concentrations≥ 40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center." *PloS* one 12.7 (2017): e0180483.
- 35. Wagner, C. L., et al. "Post-hoc analysis of vitamin D status and reduced risk of preterm birth in two vitamin D pregnancy cohorts compared with South Carolina March of Dimes 2009–2011 rates." *The Journal of steroid biochemistry and molecular biology* 155 (2016): 245-251.
- 36. Arnold, Dodie L., et al. "Early pregnancy maternal vitamin D concentrations and risk of gestational diabetes mellitus." *Paediatric and perinatal epidemiology* 29.3 (2015): 200-210.
- Burris, Heather H., and Carlos A. Camargo. "Vitamin D and gestational diabetes mellitus." *Current diabetes reports* 14.1 (2014): 451.
- 38. European Association for the Study of Diabetes (EASD) 48th Annual Meeting. Abstract 82. Presented October 3, 2012.
- 39. Lacroix, Marilyn, et al. "Lower vitamin D levels at first trimester are associated with higher risk of developing gestational diabetes mellitus." *Acta diabetologica* 51.4 (2014): 609-616.

- 40. El Lithy, Ahmed, et al. "The relationship between low maternal serum vitamin D levels and glycemic control in gestational diabetes assessed by HbA1c levels: an observational cross-sectional study." *BMC pregnancy and childbirth* 14.1 (2014): 362.
- 41. Lau, Sue Lynn, et al. "Serum 25-hydroxyvitamin D and glycated haemoglobin levels in women with gestational diabetes mellitus." *Medical Journal of Australia* 194.7 (2011): 334.
- 42. Bener, Abdulbari, Abdulla OAA Al-Hamaq, and Najah M. Saleh. "Association between vitamin D insufficiency and adverse pregnancy outcome: global comparisons." *International journal of women's health* 5 (2013): 523.
- Bennett, Sarah E., et al. "Maternal vitamin D status in type 1 diabetic pregnancy: impact on neonatal vitamin D status and association with maternal glycaemic control." *PloS one* 8.9 (2013): e74068.
- 44. Jelsma, Judith GM, et al. "DALI: Vitamin D and lifestyle intervention for gestational diabetes mellitus (GDM) prevention: an European multicentre, randomised trial–study protocol." *BMC pregnancy and childbirth* 13.1 (2013): 142.
- 45. Larqué, Elvira, et al. "Maternal and Foetal Health Implications of Vitamin D Status during Pregnancy." *Annals of Nutrition and Metabolism* 72.3 (2018): 179-192.
- 46. Greer, Frank R. "25-Hydroxyvitamin D: functional outcomes in infants and young children-." *The American journal of clinical nutrition* 88.2 (2008): 529S-533S.
- Josefson, Jami L., et al. "Maternal obesity and vitamin D sufficiency are associated with cord blood vitamin D insufficiency." *The Journal of Clinical Endocrinology & Metabolism* 98.1 (2013): 114-119.
- Josefson, Jami L., et al. "Maternal BMI associations with maternal and cord blood vitamin D Levels in a North American subset of Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study participants." *PloS one* 11.3 (2016): e0150221.
- 49. Paterson, Colin R., and David Ayoub. "Congenital rickets due to vitamin D deficiency in the mothers." *Clinical Nutrition* 34.5 (2015): 793-798.
- 50. Yorifuji, Junko, et al. "Craniotabes in normal newborns: the earliest sign of subclinical vitamin D deficiency." *The Journal of Clinical Endocrinology & Metabolism* 93.5 (2008): 1784-1788.
- 51. Thacher, Tom D., et al. "Increasing incidence of nutritional rickets: a population-based study in Olmsted County, Minnesota." *Mayo Clinic Proceedings*. Vol. 88. No. 2. Elsevier, 2013.
- 52. Weisberg, Pamela, et al. "Nutritional rickets among children in the United States: review of cases reported between 1986 and 2003." *The American journal of clinical nutrition* 80.6 (2004): 1697S-1705S.
- 53. Young, Bridget E., et al. "Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents–." *The American journal of clinical nutrition* 95.5 (2012): 1103-1112.
- 54. Javaid, M. K., et al. "Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study." *The Lancet* 367.9504 (2006): 36-43.
- 55. Zhu, Kun, et al. "Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study." *Journal of Bone and Mineral Research* 29.5 (2014): 1088-1095.
- 56. Chiu, Chih-Yung, et al. "Maternal vitamin D levels are inversely related to allergic sensitization and atopic diseases in early childhood." *Pediatric Allergy and Immunology* 26.4 (2015): 337-343.
- 57. Hart, Prue H., et al. "Vitamin D in fetal development: findings from a birth cohort study." *Pediatrics* 135.1 (2015): e167-e173
- 58. Patrick, Rhonda P., and Bruce N. Ames. "Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior." *The FASEB Journal* 29.6 (2015): 2207-2222.

- 59. Miettinen, Maija E., et al. "Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child." *PloS one* 12.10 (2017): e0184942.
- 60. Munger, Kassandra L., et al. "Vitamin D status during pregnancy and risk of multiple sclerosis in offspring of women in the Finnish Maternity Cohort." *JAMA neurology* 73.5 (2016): 515-519.
- 61. Wang, Tiantian, et al. "Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: a systematic review and meta-analysis." *European child & adolescent psychiatry* 25.4 (2016): 341-350.
- 62. Chawes, Bo L., et al. "Effect of vitamin D3 supplementation during pregnancy on risk of persistent wheeze in the offspring: a randomized clinical trial." *Jama* 315.4 (2016): 353-361.
- 63. Walker, Valencia P., et al. "Cord blood vitamin D status impacts innate immune responses." *The Journal of Clinical Endocrinology & Metabolism* 96.6 (2011): 1835-1843.
- 64. Belderbos, Mirjam E., et al. "Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis." *Pediatrics* 127.6 (2011): e1513-e1520.
- 65. Jones, Anderson P., et al. "Cord blood 25-hydroxyvitamin D 3 and allergic disease during infancy." *Pediatrics* 130.5 (2012): e1128-e1135.
- 66. De-Regil, Luz Maria, et al. "Vitamin D supplementation for women during pregnancy." *The Cochrane Library* (2012).
- 67. De-Regil LM, Palacios C, Lombardo LK, Peña-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2016;1:CD008873.
- Palacios, Cristina, et al. "Vitamin D supplementation during pregnancy: updated meta-analysis on maternal outcomes." *The Journal of steroid biochemistry and molecular biology* 164 (2016): 148-155.
- Hollis, B. W., Johnson, D., Hulsey, T. C., Ebeling, M. and Wagner, C. L. (2011), Vitamin D supplementation during pregnancy: Double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res, 26: 2341–2357. doi: 10.1002/jbmr.463
- Wagner, Carol L., et al. "A randomized trial of vitamin D supplementation in 2 community health center networks in South Carolina." *American Journal of Obstetrics & Gynecology* 208.2 (2013): 137-e1.
- Dawodu, Adekunle, et al. "Randomized controlled trial (RCT) of vitamin D supplementation in pregnancy in a population with endemic vitamin D deficiency." *The Journal of Clinical Endocrinology & Metabolism* 98.6 (2013): 2337-2346.
- 72. Sablok, Aanchal, et al. "Supplementation of vitamin D in pregnancy and its correlation with fetomaternal outcome." *Clinical endocrinology* 83.4 (2015): 536-541.
- 73. Hossain, Nazli, et al. "Obstetric and neonatal outcomes of maternal vitamin D supplementation: results of an open-label, randomized controlled trial of antenatal vitamin D supplementation in Pakistani women." *The Journal of Clinical Endocrinology & Metabolism* 99.7 (2014): 2448-2455.
- 74. Hornsby, Eve, et al. "Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial." *Journal of Allergy and Clinical Immunology* 141.1 (2018): 269-278.
- 75. Papadimitriou, Dimitrios T. "The big vitamin D mistake." *Journal of Preventive Medicine and Public Health* 50.4 (2017): 278.
- 76. Veugelers, Paul J., and John Paul Ekwaru. "A statistical error in the estimation of the recommended dietary allowance for vitamin D." *Nutrients* 6.10 (2014): 4472-4475.